Convert to singleton script fails for 1.3B checkpoint
Created by: punitkoura
🐛 Bug
The convert_to_singleton.py script fails for the 1.3B checkpoint
To Reproduce
ls 1.3b/
dict.txt gpt2-merges.txt gpt2-vocab.json reshard-model_part-0.pt reshard-model_part-1.pt
Loading extension module fused_mix_prec_layer_norm_cuda...
2022-07-19 03:15:10 | INFO | metaseq.modules.fused_bias_gelu | Done with compiling and loading fused kernels.
Traceback (most recent call last):
File "/shared/home/punitkoura/miniconda3/envs/fairseq-20220503/lib/python3.9/runpy.py", line 197, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/shared/home/punitkoura/miniconda3/envs/fairseq-20220503/lib/python3.9/runpy.py", line 87, in _run_code
exec(code, run_globals)
File "/shared/home/punitkoura/src/metaseq/metaseq/scripts/convert_to_singleton.py", line 168, in <module>
main()
File "/shared/home/punitkoura/src/metaseq/metaseq/scripts/convert_to_singleton.py", line 164, in main
dist_utils.call_main(cfg, worker_main)
File "/shared/home/punitkoura/src/metaseq/metaseq/distributed/utils.py", line 263, in call_main
return _spawn_helper(main, cfg, kwargs)
File "/shared/home/punitkoura/src/metaseq/metaseq/distributed/utils.py", line 241, in _spawn_helper
retval = distributed_main(-1, main, cfg, kwargs)
File "/shared/home/punitkoura/src/metaseq/metaseq/distributed/utils.py", line 203, in distributed_main
main(cfg, **kwargs)
File "/shared/home/punitkoura/src/metaseq/metaseq/scripts/convert_to_singleton.py", line 113, in worker_main
models, _model_args, _task = checkpoint_utils.load_model_ensemble_and_task(
File "/shared/home/punitkoura/src/metaseq/metaseq/checkpoint_utils.py", line 582, in load_model_ensemble_and_task
model = build_model_hook(cfg, task)
File "/shared/home/punitkoura/src/metaseq/metaseq/scripts/convert_to_singleton.py", line 106, in _build_model
model = task.build_model(cfg.model).half().cuda()
File "/shared/home/punitkoura/src/metaseq/metaseq/tasks/base_task.py", line 551, in build_model
model = models.build_model(args, self)
File "/shared/home/punitkoura/src/metaseq/metaseq/models/__init__.py", line 89, in build_model
return model.build_model(cfg, task)
File "/shared/home/punitkoura/src/metaseq/metaseq/model_parallel/models/transformer_lm.py", line 55, in build_model
decoder = ModelParallelTransformerDecoder(
File "/shared/home/punitkoura/src/metaseq/metaseq/models/transformer.py", line 395, in __init__
self.build_decoder_layer(
File "/shared/home/punitkoura/src/metaseq/metaseq/models/transformer.py", line 542, in build_decoder_layer
layer = fsdp_wrap(
File "/shared/home/punitkoura/src/metaseq/metaseq/distributed/fully_sharded_data_parallel.py", line 145, in fsdp_wrap
return wrap(module, **kwargs)
File "/shared/home/punitkoura/src/fairscale/fairscale/nn/wrap/auto_wrap.py", line 187, in wrap
return ConfigAutoWrap.wrapper_cls(module, **wrap_overrides)
File "/shared/home/punitkoura/src/metaseq/metaseq/distributed/fully_sharded_data_parallel.py", line 48, in __init__
super().__init__(*args, **kwargs)
File "/shared/home/punitkoura/src/fairscale/fairscale/nn/data_parallel/fully_sharded_data_parallel.py", line 459, in __init__
self._fsdp_wrapped_module: nn.Module = FlattenParamsWrapper(
File "/shared/home/punitkoura/src/fairscale/fairscale/nn/misc/flatten_params_wrapper.py", line 222, in __init__
params, param_infos, shared_param_infos = self._init_flatten_params(new_p_set)
File "/shared/home/punitkoura/src/fairscale/fairscale/nn/misc/flatten_params_wrapper.py", line 301, in _init_flatten_params
assert (
AssertionError: expects all parameters to have same dtype: fp32: _fpw_module.self_attn_layer_norm,_fpw_module.self_attn_layer_norm,_fpw_module.final_layer_norm,_fpw_module.final_layer_norm
fp16: _fpw_module.self_attn.qkv_proj,_fpw_module.self_attn.qkv_proj,_fpw_module.self_attn.out_proj,_fpw_module.self_attn.out_proj,_fpw_module.fc1,_fpw_module.fc1,_fpw_module.fc2,_fpw_module.fc2
Expected behavior
We should get a consolidated 1.3B checkpoint.
Environment
- metaseq Version : main
- PyTorch Version (e.g., 1.0) : 10
- OS (e.g., Linux, Windows, MacOS):
- How you installed metaseq (
pip, source): - Build command you used (if compiling from source):
- Python version:
- CUDA/cuDNN version:
- GPU models and configuration:
- Any other relevant information: